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Outline: what I want to do in this talk

Acknowledge colleagues (and promote our recent paper [1])

Anomaly detection: a ridiculously vague concept

RX: a tale of two derivations

Kernels: an old dog learns a new trick

Change: because everything is different

[1] S. Matteoli, M. Diani, JT. “An overview of background modeling for detection of
targets and anomalies in hyperspectral remotely sensed imagery.” JSTARS 7 (2014).
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Anomalies are defined by. . .

what they are not

“There is not an unambiguous way to define an anomaly,
. . . an observation that deviates in some way from the
background clutter.” – Matteoli et al. (2010)

“Thus the multiplicity of possible spectra associated with the
objects of interest and the complications of atmospheric
compensation . . . detectors that seek to distinguish
observations of unusual materials from typical background
materials without reference to target signatures or target
subspaces. . . . Anomalies are defined with reference to a
model of the background.” – Stein et al. (2002)

“The basis of an anomaly detection system is accurate
background characterization.” – Ashton (1999)
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Anomaly detection is defined by. . .

an advertisement from the 1970’s

target detection when you don’t know what the target is

or
“What are you hungry for when you don’t know what you’re hungry for?”

“Something on a crisp Ritz cracker!”
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Anomalies are defined by. . .
a novel from the 1870’s

“All happy families are alike; every
unhappy family is unhappy in its
own way.”

Leo Tolstoy
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Anomalies are defined by. . .
concepts that are even harder to define

We really want interesting data, whatever that means

Anomalies are “potentially interesting”
• rare
• unlike most of the data

So anomaly detection is an intermediate triage

processor
Anomaly

Detector

Data
Anomalous Interesting

DataData

Downstream
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RX

I. S. Reed and X. Yu. “Adaptive multiple-band CFAR detection of an optical
pattern with unknown spectral distribution.” IEEE Trans. Acoustics, Speech and
Signal Processing 38 (1990) 1760–1770.

P. C. Mahalanobis. “On the generalised distance in statistics,” Proc. National
Institute of Sciences of India 2 (1936) 49–55.
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RX: a twice-told tale

Derivation #1: using additive unknown target and GLRT
• Ho : x = z ∼ N (µ,C )
• H1: x = z + t for unknown t

← t is “undefined”
• Generalized likelihood ratio:

maxt exp
[
−(x− t− µ)TC−1(x− t− µ)/2

]
exp [−(x− µ)TC−1(x− µ)/2]

Derivation #2: using explicit model for anomalies
• Ho : x = z ∼ N (µ,C )
• H1: x = t ∼ U

← t is “defined”

• Straight likelihood ratio:
1

exp [−(x− µ)TC−1(x− µ)/2]

Both derivations lead to A(x) = (x− µ)TC−1(x− µ)
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RX as classification

Blue points: observed data

Red crosses: artificial data

• drawn from an explicit anomaly model: t ∼ U

Magenta line: contour of constant A(x)

separates the classes
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We’ve defined anomalies! t ∼ U

Two consequences

1. Can use likelihood ratio to build optimal anomaly detectors for
any background model (that provides a density function)

A(x) =
P(x is anomalous)

P(x is normal)
=

U(x)

p(x)
=

1

p(x)

2. Can evaluate performance of anomaly detectors in an
objective and unambiguous way
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Evaluate performance of anomaly detectors
in an objective and unambiguous way

Proper evaluation is given by detection and false alarm rates
• But detection rate depends on choice of targets
• (and those targets are by definition undefined?)

Plan A: the ultimate arbiter of anomaly detection performance
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Plan B: Implant targets using t ∼ U

Equivalently: plot volume vs false alarm rate
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Volume vs false alarm rate

Three anomaly detectors with Pfa = 0.001

Volume grows with
decreasing false alarm rate

Volume is a proxy for
missed detection rate

Smaller volumes are better
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Characterizing data on the periphery

First coordinate
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AVIRIS data, first two channels

Contours drawn for false alarm
rates of 5% and 0.1%

Red ellipses more effective at 5%

Blue ellipses more effective at 0.1%

Evaluate performance for
224-channel image

Plot log-volume vs false alarm rate

Compare covariance matrices 10
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Some challenges with t ∼ U

computing volumes in high-dimensional spaces

coordinate dependence
• eg, log t 6∼ U

dimension dependence: projections are problematic
• eg, can’t compare RX to SSRX
• SSRX contours have infinite volume in original space

non-probabilistic approaches:
• eg, kernels, graphs, manifolds, sparse models, etc.
• need contours of constant A(x)
• need to be able to compute volume inside those contours
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kernels

non-Gaussian kernel
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Kernel Density Estimation (traditional)

Given data: {x1, . . . , xN}
Drawn from an unknown probability density function p(x)

Estimate p(x) from the data

MLE: p̂(x) = 1
N

∑N
n=1 δ(x− xn)

Regularize δ() with kernel: κ(x, xn) = c · exp

(
−‖x− xn‖2

2σ2

)
KDE: p̂(x) = 1

N

∑N
n=1 κ(x, xn)

KDE anomaly detector: A(x) = 1− 1
N

∑N
n=1 κ(x, xn)
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Kernels (modern)

Function φ : Rd → F maps data to feature space
• x ∈ Rd is data in “real” space
• φ(x) ∈ F is data mapped to feature space

Scalar dot products in feature space F can be expressed as
functions of the values in real space.

κ(r, s) = φ(r)Tφ(s)

Trick: Even though φ is presumed to “exist” in some abstract
philosophical/mathematical sense, we may not actually need
to use it, as long as we have the kernel function κ.

Gaussian kernel:

κ(r, s) = c · exp

(
−‖r − s‖2

2σ2

)
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KDE anomaly detector, revisited

Given data: {x1, . . . , xN}
Map to feature space: {φ(x1), . . . , φ(xN)}
Define centroid: µφ = 1

N

∑N
n=1 φ(xn)

Define anomalousness as distance to centroid in feature space:

A(x) = ‖φ(x)− µφ‖2 = (φ(x)− µφ)T (φ(x)− µφ)

= φ(x)Tφ(x)︸ ︷︷ ︸
κ(x, x)=constant

−2φ(x)Tµφ + µT
φµφ︸ ︷︷ ︸

constant

Note: φ(x)Tµφ = 1
N

∑N
n=1 φ(x)Tφ(xn) = 1

N

∑N
n=1 κ(x, xn)

Leads to KDE anomaly detector:

A(x) = constant− 2

N

N∑
n=1

κ(x, xn)
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Support Vector Domain Description (SVDD)

Given data: {x1, . . . , xN}
Map to feature space: {φ(x1), . . . , φ(xN)}
Define adaptive centroid: aφ =

∑
n anφ(xn)

Minimize radius of sphere that encloses the data

min
R,aφ

R2

+ c
∑
n

ξn

subject to: ‖φ(xn)− aφ‖2 ≤ R2

+ ξn

and: ξn ≥ 0

Leads to SVDD anomaly detector

A(x) = ‖φ(x)− aφ‖2 = constant−
∑
n

anκ(x, xn)

• Similar to KDE, but with unequal weights on the points xn
• Points with an > 0 are “support vectors”
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KDE vs SVDD in feature space
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KDE flattened: project to the data plane

Given data: {x1, . . . , xN}
Map to feature space: {φ(x1), . . . , φ(xN)}
Define centroid: µφ = 1

N

∑N
n=1 φ(xn)

Define: φc(x) = φ(x)− µφ

KDE uses distance in feature space: A(x) = φc(x)Tφc(x)

Define: Φc = [φc(x1) · · ·φc(xN)]

= VφΛ1/2W T︸ ︷︷ ︸
SVD

Project to data plane:

φ∗c(x) = V T
φ φc(x) = Λ−1/2W TΦT

c︸ ︷︷ ︸
VT
φ

φc(x)

KDE-flat uses distance after projection to data plane:

A(x) = φ∗c(x)Tφ∗c(x) = φc(x)TΦcW Λ−1W TΦT
c φc(x)
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φc(x)

KDE-flat uses distance after projection to data plane:

A(x) = φ∗c(x)Tφ∗c(x) = φc(x)TΦcW Λ−1W TΦT
c φc(x)
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KDE flattened

φ

(x)

Feature space

Data Plane

φ

Real space

x
(x)φ

µ

V φ
T

φ

Data Plane is subspace spanned by [φ(x1), . . . , φ(xN)]

φ(x) maps potential anomaly x to the feature space

V T
φ φ(x) is projection of φ(x) to Data Plane

KDE: A(x) = ‖φ(x)− µφ‖2

KDE-flat: A(x) = ‖V T
φ φ(x)− µφ‖2
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KDE flattened: project to the data plane

Recall: KDE-flat defines

A(x) = φ∗c(x)Tφ∗c(x) = φc(x)TΦcW Λ−1W TΦT
c φc(x)

Let k(x) = ΦT
c φ(x) ∈ RN

k(x) =

 κ(x, x1)− (1/N)
∑N

n=1 κ(x, xn)
...

κ(x, xN)− (1/N)
∑N

n=1 κ(x, xn)


Let µk = 1

N

∑N
n=1 k(xn)

Centered Gram matrix: Kc = ΦT
c Φc = W ΛW T ∈ RN×N

Then, KDE-flat given by

A(x) = [k(x)− µk ]T K−1
c [k(x)− µk ]
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Kernel RX

Apply kernel trick to RX: A(x) = φc(x)TC−1
φ φc(x), where

Cφ =
N∑

n=1

φc(xn)φc(xn)T

= ΦcΦT
c = VφΛ1/2W T︸ ︷︷ ︸

Φc

W Λ1/2V T
φ︸ ︷︷ ︸

ΦT
c

= VφΛV T
φ

Cφ is not invertible; use pseudoinverse: C−1
φ = VφΛ−1V T

φ

Anomalousness: A(x) = φc(x)T VφΛ−1V T
φ︸ ︷︷ ︸

C−1
φ

φc(x)

Use Vφ = ΦcW Λ−1/2 to obtain

A(x) = φc(x)TΦc W Λ−2W T ΦT
c φc(x)

= [k(x)− µk ]T K−2
c [k(x)− µk ]



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �

Summary of kernel anomaly detectors

Properties
centroid distance flatten A ∼ κ

KDE µφ Euclidean no linear
SVDD aφ Euclidean no linear

KDE-flat µφ Euclidean yes quadratic
KRX µφ Mahalanobis yes quadratic

Formulas for anomalousness

KDE: A(x) = 1− (1/N)
∑N

n=1 κ(x, xn)

SVDD: A(x) = 1−
∑

n anκ(x, xn)

KDE-flat: A(x) = [k(x)− µk ]T K−1
c [k(x)− µk ]

KRX: A(x) = [k(x)− µk ]T K−2
c [k(x)− µk ]
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Numerical experiments - 2D

σ →∞

KRX
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Numerical experiments - 2D

σ = 100
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Numerical experiments - 2D

σ = 30

KRX
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Numerical experiments - 2D

σ = 10

KRX
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Numerical experiments - 2D

σ = 5

KRX
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Numerical experiments - 2D

σ = 3

KRX
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Numerical experiments - 2D

σ = 2

KRX
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Numerical experiments - 2D

σ = 1

KRX
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Numerical experiments - 2D

σ = 0.5
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Numerical experiments - 1D

σ = 100
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KDE is simple and reasonable, if not optimal
• Use KDE (not RX) for comparison to new kernel algorithms

Be wary of projecting to the data plane
• KDE-flat is a bad idea
• KRX also projects to the data plane, is that bad?

For KRX, err on the side of large σ
• In σ →∞ limit, KRX → RX
• For small σ, KRX is a disaster!

SVDD generally more robust to choice of σ
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Numerical experiments - 1D

σ = 10
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• Use KDE (not RX) for comparison to new kernel algorithms

Be wary of projecting to the data plane
• KDE-flat is a bad idea
• KRX also projects to the data plane, is that bad?

For KRX, err on the side of large σ
• In σ →∞ limit, KRX → RX
• For small σ, KRX is a disaster!

SVDD generally more robust to choice of σ
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Numerical experiments - 1D

σ = 5
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Numerical experiments - 1D

σ = 3
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Numerical experiments - 1D

σ = 2

10-5 10-4 10-3 10-2 10-1 100

False alarm rate

0.0

0.2

0.4

0.6

0.8

1.0

V
o
lu

m
e

KDE

SVDD

KDE-flat

KRX

10 5 0 5 10
position

0.2

0.0

0.2

0.4

0.6

0.8

1.0

a
n
o
m

a
lo

u
sn

e
ss

KDE is simple and reasonable, if not optimal
• Use KDE (not RX) for comparison to new kernel algorithms

Be wary of projecting to the data plane
• KDE-flat is a bad idea
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Numerical experiments - 1D

σ = 1
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Be wary of projecting to the data plane
• KDE-flat is a bad idea
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For KRX, err on the side of large σ
• In σ →∞ limit, KRX → RX
• For small σ, KRX is a disaster!
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Numerical experiments - 1D

σ = 1
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• KRX also projects to the data plane, is that bad?
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Anomalous Change Detection (ACD)

“Just because everything is different doesn’t mean anything has changed.”
–Irene Peter
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Anomalous Change Detection (ACD)

“Just because everything is different doesn’t mean anything has changed.”
–Irene Peter



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �

Pervasive differences vs. Anomalous changes

x y
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Anomalies vs. Anomalous changes

Anomalies: in the tails of p(x , y)

Anomalous changes:
• Not unusual components
• Unusual relationship between the components

y

x

Circles are anomalous changes

Squares are anomalies that are not anomalous changes



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �

Pervasive differences vs. Anomalous changes

y

x

Pervasive differences: p(x, y)

Explicit model for anomalous changes: pa(x, y) = p(x)p(y)
• Only the change x→ y is anomalous, not x or y

Likelihood ratio gives optimal classifier:
p(x)p(y)

p(x , y)
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Pervasive differences vs. Anomalous changes

y

x

Pervasive differences: p(x, y)

Explicit model for anomalous changes: pa(x, y) = p(x)p(y)
• Only the change x→ y is anomalous, not x or y

Likelihood ratio gives optimal classifier:
p(x)p(y)

p(x , y)
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Different anomalous change detectors
from different models for anomalous changes

RX CC

CC HACD

A(x) =
pa(x, y)

p(x, y)

RX
pa(x, y) = U(x)U(y)

CC
pa(x, y) = p(x)U(y)

CC
pa(x, y) = U(x)p(y)

HACD
pa(x, y) = p(x)p(y)
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Obstacles overcome, riddles resolved

Anomalies vs Anomalous changes

t ∼ U vs t ∼ pa(x , y) = p(x)p(y)
A(x) = 1/p(x) vs A(x, y) = p(x)p(y)/p(x, y)

Anomalies are rife with conundrums
• eg, p(x) depends on coordinates
• eg, 1/p(x) problematic for subspaces
• eg, sampling from t ∼ U tricky in high dimensions

that are resolved by anomalous changes
• p(x)p(y)/p(x, y) invariant to coordinate choice
• p(x)p(y) has same dimensions as p(x, y)
• sampling from t ∼ p(x)p(y) just resamples data



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �

Simulation framework for ACD

Base image
to begin with

Pervasive Differences
applied to all pixels

Anomalous Change
applied to one pixel
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Simulation framework for ACD

Base image
to begin with

Pervasive Differences
applied to all pixels

Anomalous Change
applied to all pixels



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �

ROC curves for simulated anomalous changes

split channels smooth misregistration
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EC = Elliptically Contoured
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AFRL data (Eismann, Meola)

taken Aug 25, 2005 taken Oct 14, 2005

taken Oct 14, 2005, after placing two dark tarps on the grass
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AFRL data: ROC curves

simulated anomalies real anomalies
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Misregistration compensation

χ

γ

min

LCRA: Local Co-Registration Adjustment

Ak,l = min
m,n
A(χk,l ,γk+m,l+n)

SLCRA: Symmetric LCRA (max of min’s)

Sub-pixel adjustments

Covariance re-estimation

etc.
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Misregistration compensation

γ

χ χ

γ

minmin

LCRA: Local Co-Registration Adjustment

Ak,l = min
m,n
A(χk,l ,γk+m,l+n)

SLCRA: Symmetric LCRA

(max of min’s)

Sub-pixel adjustments

Covariance re-estimation

etc.
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Misregistration compensation

γγ

χχ

maxmin min

LCRA: Local Co-Registration Adjustment

Ak,l = min
m,n
A(χk,l ,γk+m,l+n)

SLCRA: Symmetric LCRA (max of min’s)

Sub-pixel adjustments

Covariance re-estimation

etc.
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Misregistration compensation

γγ

χχ

maxmin min

LCRA: Local Co-Registration Adjustment

Ak,l = min
m,n
A(χk,l ,γk+m,l+n)

SLCRA: Symmetric LCRA (max of min’s)

Sub-pixel adjustments

Covariance re-estimation

etc.
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Misregistration compensation

2006 2008
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Misregistration compensation

2008 2006
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Misregistration compensation

EC-HACD EC-HACD + SLCRA



Theiler LA-UR-14-24429

� Definition RX Evaluate Kernels K-2d K-1d Change �



� Definition RX Evaluate Kernels K-2d K-1d Change �

Conclusion
If we believe that anomaly (and/or anomalous change) detection is
interesting, useful, or important;

Then we need to:

1. Employ objective and reliable measures of performance
• eg, scrambled pixels for anomalous change detection
• eg, volume vs false alarm rate, for anomaly detection
• challenge: high dimensions
• challenge: subspaces and coordinate choices
• challenge: non-probabilistic approaches

I eg, kernels, graphs, manifolds, sparse models, etc.

2. Define more explicitly what we mean by “anomaly”
• a·nom·a·ly: target defined by a probability distribution that in

general is broad and flat, and in particular instances can be
specified precisely; eg, t ∼ U .

No, really, what are you hungry for?
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I eg, kernels, graphs, manifolds, sparse models, etc.

2. Define more explicitly what we mean by “anomaly”
• a·nom·a·ly: target defined by a probability distribution that in

general is broad and flat, and in particular instances can be
specified precisely; eg, t ∼ U .
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